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Abstract

Nowadays, real-time classification of Big Data streams is becoming essential in a variety
of application domains. While decision trees are powerful and easy—to—deploy approaches
for accurate and fast learning from data streams, they are unable to capture the strong
temporal dependences typically present in the input data. Recurrent Neural Networks are
an alternative solution that include an internal memory to capture these temporal depen-
dences; however their training is computationally very expensive, with slow convergence
and not easy-to—deploy (large number of hyper-parameters). Reservoir Computing was
proposed to reduce the computation requirements of the training phase but still include
a feed-forward layer which requires a large number of parameters to tune. In this work
we propose a novel architecture for real-time classification based on the combination of
a Reservoir and a decision tree. This combination makes classification fast, reduces the
number of hyper-parameters and keeps the good temporal properties of recurrent neural
networks. The capabilities of the proposed architecture to learn some typical string-based
functions with strong temporal dependences are evaluated in the paper. The paper shows
how the new architecture is able to incrementally learn these functions in real-time with
fast adaptation to unknown sequences and analyzes the influence of the reduced number
of hyper-parameters in the behaviour of the proposed solution.

Keywords: Real-time classification, big data streams, Echo State Network, Hoeffding
Tree, incremental learning, temporal dependencies.

1. Introduction

There is a need to perform real-time learning analytics of large amounts of data, usually
generated in a decentralised fashion from a variety of data sources (e.g. social media, web
feeds, IoT, sensors, mobile devices, etc.). This need is becoming the norm in a large variety
of applications today that are dynamically fed with data that is short-lived and rapidly
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superseded by new data. Given the huge amounts of data generated, applications need to
process data on-the-fly, with fast reaction and adaptation to changes.

This paper focusses on real-time classification, which introduces the following con-
straints: the classifier must be ready to predict at any time, deal with potentially infinite
data streams and use each sample in the data stream only once (with limited amount of
CPU cycles and memory). The preferred choice for real-time classification in a variety of
applications is the use of incremental decision trees, which are able to learn with high accu-
racy and in a timely manner; however, these solutions fail to capture the strong temporal
dependencies that are typically present in data streams because they make no consideration
of past instances or labels at prediction time

Neural Networks (NN) are very popular nowadays due to the rapid growth of success
stories of Deep Learning methods. Although deep neural networks can learn incrementally,
they have so far proved to be too sensitive to their hyper-parameters and initial conditions;
for this reason NN are not considered an effective off-the—shelf solution to process data
streams [Marrén et al. (2016)]. Recurrent Neural Networks (RNN) are a type of NN with
an internal memory that allow them to capture temporal dependencies. Training a RNN
is challenging and requires a large amount of time, making them not viable for real-time
learning [Werbos (1988); Martens and Sutskever (2011)]. In the recent years Reservoir
Computing (RC) has emerged as an alternative for training RNN, aiming for a simpler and
faster training [Maass et al. (2002); Jaeger (2001)]. RC can be seen as an standard NN
that learns from what is called a ”reservoir” unit, which is responsible for capturing the
temporal dependencies of the input data stream. RC performs the training only at the
readout step. Although conceptually simpler than most RNN, computationally cheap, and
easier to implement, they still have high sensitivity to hyper-parameter configurations (i.e.
small changes to any of them affect the accuracy in a non-predictable way [Lukosevicius
(2012)]).

In this work we continue studying the use of NN (and RNN) to process data streams.
In particular, this paper contributes with the proposal of a novel approach to learn time
dependencies on data streams in real-time; we call it the Echo State Hoeffding Tree (ESHT)
because it combines the use of the reservoir in the Echo State Network (ESN) proposal and a
Hoeffding Tree (HT), both described in the next section. The proposed ESHT architecture
requires few iterations to adapt to unseen sequences, and less hyper-parameters to tune
(only two) than the standard ESN while still being able to model time dependencies. Also,
the hyper-parameters needed by the ESHT are simpler to understand, and their influence
on the final accuracy is more predictable.

As a proof of concept, we have built a prototype to evaluate the proposed architecture
in terms of its ability to learn functions typically implemented by a programmer. In par-
ticular we use the Counter and lastIndexOf functions from the Java StringStream library
and an emailFilter. The outputs of these functions clearly depend on the current string-
stream historic, as it happens in handwriting or speech recognition tasks. A more efficient
implementation is part of our future work, allowing us to perform a deeper evaluation of
the proposed system with an extended set of functions and larger input datasets.

The rest of the paper is organised as follows: in Section 2 we discuss the state-of-the-
art and related work. The proposed ESHT architecture design is presented in Section 3.
Section 4 evaluates ESHT with the aforementioned functions and shows the influence of the
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hyper-parameters that are used to configure it. Finally we conclude the paper and discuss
some future work in Section 5.

2. State-of-the-art and Related Work

2.1. Incremental Decision Trees for Data Streams Classification

Incremental decision trees have been proposed in the literature for learning in data streams,
making a single pass on data and using a fixed amount of memory. They are usually able to
keep up with the rate at which data arrives and are easy to deploy (work out—of-the—box,
no hyper-parameters to tune). The Hoeffding Tree (HT) and its variations [Domingos and
Hulten (2000); Bifet et al. (2010); Ikonomovska et al. (2010)] are the most effective and
widely used incremental decision trees able to build very complex trees with acceptable
computational cost.

The HT makes use of the Hoeffding Bound (Hoeffding, 1963) to decide when and where
to grow the tree with theoretical guarantees. Internal nodes are used to route a sample to
the appropriate leaf where the sample is labelled. The HT produces a nearly-identical tree
built by a conventional batch decision-tree inducer.

The main disadvantage of the HT and its variations is that they are not able to capture
temporal dependencies on data streams. In the next section we briefly describe one of these
variations, the FIMT-DD (Fast Incremental Model Tree with Drift Detection [Tkonomovska
et al. (2010)]), which is used as one of the building blocks in our proposed architecture.

2.2. Neural Networks and Recurrent Neural Networks

Neural Networks (NN) are providing outstanding accuracy in many tasks, being able to
outperform humans in tasks such as image recognition [He et al. (2015)] or even defeat
professional Go players [Silver et al. (2016)].

Although NN can be trained incrementally [Rumelhart et al. (1988); Bottou (1998)]
using backpropagation algorithms, each sample still requires two steps: 1) a forward step to
compute the error, and 2) a backward propagation of the error which usually requires the
computation of derivatives. NN are designed for batch learning requiring many iterations
over the data and large amounts of data to achieve good accuracy, complicating a real-
time response when the number of layers grow. Another important issue when applying
NN for real-time analysis is their high sensitivity to hyper-parameter configurations that
complicates their deployment [Marrén et al. (2016)].

In practice data streams usually present strong temporal dependencies that are not
easily captured by typical NN. Recurrent Neural Networks (RNN) are a type of NN with
an internal memory that allows them to exhibit dynamic temporal behaviour. RNN are
widely used in natural language processing and speech /handwriting recognition [Sak et al.
(2014); Graves et al. (2009)].

In exchange to the ability to model time, the training of an RNN is more complex than
for a standard NN. This is mainly due to gradient explosion effect [Bengio et al. (1994)]:
a small change to an iterative process can compound and result in very large effects many
iterations later. There is no standard algorithm to train RNN. For example, Back Prop-
agation Through Time (BPTT) [Mozer (1995); Robinson and Fallside (1987)] unfolds the
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RNN to train it similarly to a feed-forward NN with standard backpropagation algorithm.
Each instance or batch of instances requires more computations, which complicates the “be
ready to predict at any time” constraint for real-time classifiers. Hessian Free Optimisation
[Martens and Sutskever (2011)] is a very effective method that uses the conjugate gradient
to approximate the curvature matrix. It converges faster than BPTT but still requires a
large amount of computations.

2.3. Reservoir Computing

Reservoir Computing (RC) uses a fixed random RNN called the reservoir, whose overall
dynamics are driven by the input (and also affected by the past). Liquid-State Machines
(LSM) [Maass et al. (2002)] and Echo State Networks (ESN) [Jaeger (2001)] are the two
major reservoir-based proposals. RC has been applied in tasks with strong temporal de-
pendencies, such as speech recognition [Skowronski and Harris (2007)] or predicting chaotic
time series [Jaeger and Haas (2004)].

In this paper we focus on the ESN, whose architecture is shown in Figure 1. The
ESN includes a single-layer reservoir, which we name Echo State Layer (ESL), and a fully-
connected feed-forward NN. The ESL allows to the ESN to act as a dynamic short-term
memory, outperforming RNN trained with Hessian Free Optimisation [Jaeger (2012)]; in
addition, the ESN is also able to model non-linear patterns [Ozturk and Principe (2007)].

LABEL y

Layer Feed-forward |
X(n) Neural Network } y

INPUT
U(n) Echo State :: Fully-connected PREDICTION
O(n)

Figure 1: Echo State Network: Echo State Layer and fully-connected feed-forward NN

As we will show in the next section, the ESL update is computationally inexpensive,
with no derivatives and no error backpropagation that are required to train other RNN.
This fast update, while still being able to model temporal dependencies, makes the ESL
very attractive for real-time analysis.

The ESL needs to satisfy the so called Echo State Property (ESP): for a long enough
input U(n) the echo state X(n) has to asymptotically wash out any information from the
initial conditions. The ESP is usually guaranteed for any input if the spectral radius of
the ESL Weight Matrix is smaller than unit but is not limited to it: under some conditions
the larger the amplitude of the input the further above the unit the spectral radius may be
while still obtaining the ESP [Yildiz et al. (2012)].

3. Echo State Hoeffding Tree

In this section we present the Echo State Hoeffding Tree (ESHT'), our new approach to learn
from data streams with strong temporal dependencies. We propose a hybrid approach that
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combines the ESL ability to encode time dependencies in the ESN, with a very efficient
incremental Hoeffding Tree regressor (the FIMT-DD [Ikonomovska et al. (2010)]). The
proposed architecture is shown in Figure 2.

LABEL y
INPUT
U(n) Echo State FIMT-DD PREDICTION
Layer |:> (Hoeffding Tree o
X(n) O(n) Regressor) ’ y

Figure 2: Echo State Hoeffding Tree design

The input data stream feeds an ESL, which is further detailed in Figure 3. It is a fixed
single-layer RNN that transforms time-varying input U(n) to a spatio-temporal pattern of
activations on the output O(n). The input U(n) € R¥ is connected to the echo state X(n)
€ RY through a weight matrix Wil The echo state is connected to itself through a sparse
weight matrix W, ’

w(n) = tanh(W"U (n) + WX (n — 1)) (1)
X(n)=(1-a)X(n—1)+ aw(n), (2)
O(n) = X(n) (3)

The « is used during the echo state X (n) update, and it controls how the echo state X (n)
is biased towards new states or past ones, i.e, controls how sensible the X (n) is to outliers.
Optionally, we could connect the input U(n) to the output O(n) € RY using a weight
matrix WJ‘\’,“% In this work, however, we do not use W]‘\’,uf( (see Eq. 3) since it requires the

calculation of correlation matrices or pseudo-inverses which are computationally costly.

Wres

a —

Win
INPUT U(n) I:{> RESEE,‘)'O'R IZ{> OUPUT O(n)
Figure 3: Echo State Layer
All matrices in the ESL are randomly initialised. The echo state X (n) is initialised

to zero and it is the only part that is updated during the execution. Note that the echo
state X (n) only depends on the input to change its state. As shown in Eq. 2, calculating
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the X(n) is computationally inexpensive since it only computes a weighted vector addition
(compared to other RNNs training algorithms, the update cost is almost negligible).

The hyper-parameters required to configure the ESL are: « in Eq. 2, number of neurons,
and density of the sparse matrix W1fy, in Eq. 1 (in this work, density € (0, 1.0]). Regarding
the number of neurons in the echo state X (n), [Lukosevicius (2012)] states as a generic rule
to set it up proportional to the number of time steps an input should be remembered.

As can be observed in the architecture in Figure 2, our proposal replaces the fully
connected feed-forward NN in the original ESN proposal with a FIMT-DD, a variation of
the HT designed for regression. The basic idea of FIMT-DD is to train perceptrons in
the leaves of the incremental decision tree by updating the weights after each consecutive
example. The FIMT-DD includes all numerical attributes in the regression equation with
linear output. The attribute split is done as in the standard HT for continuous attributes,
and using the extended binary search tree [Gama (2003)] for numeric ones.

The main advantage of FIMT-DD is that it requires less samples than a NN to achieve
good accuracy. In addition it is easier to deploy since it does not require the configuration
of hyper-parameters, reducing the deployment complexity of the proposed architecture.

3.1. Methodology: Learning Functions

As a proof of concept, we propose the ESHT to learn functions typically implemented
by programmers. In the evaluations we use what we call a module (Figure 3.1) that is
composed of a label generator and an ESHT. A module learns one function by only looking
at its inputs and output (no other information is provided to the ESHT) in real-time.

The label generator uses the function we want to learn to label the input. The input
to the ESHT can be randomly generated or read from a file, and can be a single integer
(Sections 4.1 and 4.2) or a vector (Sections 4.2 and 4.3). Both input and label are forwarded
to the ESHT.

In this work we use only one module in the evaluations, but modules could be com-
bined to solve complex tasks the same way programmers combine functions when writing
programs. A potential application of this methodology is to treat programming as a black
box: we could write the tests for a function and use the ESHT to learn the function instead
of implementing it. This way, scaling computations is a matter of scaling a single model.
This is part of our future work, once we clearly understand how ESHT behaves in a well
optimised implementation.

4. Evaluation

This section evaluates the behaviour of the proposed ESHT architecture for learning three
character-stream functions: Counter, lastIndexOf and emailFilter. Function Counter counts
the number of elements that appear in the input between two consecutive zeros. Function
lastIndexOf outputs the number of elements in the input since we last observed the current
symbol. In other words, it counts the number of elements between two equal symbols in
the stream (i.e. use one Counter for each symbol). Finally, emailFilter is a function that
detects valid email addresses in a character stream.

In order to understand the behaviour of ESHT we study the effect of its two hyper-

parameters: « in Eq. 2 and the density of the sparse matrix W}{,ej”v in Eq. 1. We use
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Echo State Layer
X(N)

LABEL
GENERATOR
O(n)

LABEL

FIMT-DD
(Hoeffding Tree
e Regressor)

PREDICTION
y

Figure 4: Module internal design: label generator and ESHT

Counter and lastIndexOf functions for this purpose. In both evaluations we fix the number
of neurons to 1,000. In the Counter evaluation we test combinations of o and density in
the range [0.1,1.0] in steps of 0.1. In the lastIndezOf evaluation we use the outcomes to
test only some combinations of « in the same range.

We use emailFilter function to compare the behaviour of the proposed ESHT architec-
ture with a FIMT-DD regressor tree, a standard fully-connected feed-forward NN and the
ESN.

Two metrics are used for the purposes of evaluating the behaviour of ESHT, both derived
from the errors detected in the output: cumulative loss and accuracy. An error occurs when
the output is incorrectly classified, i.e. when |y, — | >= 0.5, being ¢ the predicted label
and y; the actual label; we use a distance of 0.5 since all labels are integer numbers. The
cumulative loss shows the accumulated |y; — | for all the incorrectly classified inputs. And
accuracy shows the proportion of correctly predicted labels with respect to the number of
inputs.

Since ESHT is proposed for real-time analysis, it is also important to analyze the number
of iterations that are needed in order to correctly output the correct label for a previously
seen sequence. For example, for the Counter function evaluation, when we say that ESHT
needs to observe a sequence two times, it means that at the third time the ESHT observes
that sequence it outputs its correct length.

4.1. Counter

Two variations of the Counter function have been implemented (shown in Figure 5). In
Opt1 the label for each symbol in the input stream is the number of symbols since the last
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zero appeared (and 0 when the zero symbol appears); in Opt2 the label is different than 0
only when zero appears in the input stream, returning in this case the number of symbols
since the previous zero appeared.

T=0 | T=1 | T=2 | T=3 | T=4 | T=5 | T=6 | T=7

—
INPUT
|:> 0o | 1 1 1 0o | 1 1 0

Counter Optt

GENERATOR S RN R -
Opt2

Figure 5: Counter generator functions

The input stream is a random sequence of 0/1 symbols generated following a normal
distribution in order to analyze the influence of parameters a and density on the loss and
accuracy mentioned in the previous section for an input of 1,000 samples.

From a visual inspection of the output generated, the first conclusion that we obtain is
that ESTH is able to learn possible sequences of the input symbols after seeing them two
or three times. Figure 6 shows the evolution along time (number of input symbols) for the
cumulative loss and accuracy, for each Counter option and for two different combinations
of parameters a and density.

30 r1r|rrrrrrrrjrrrr.Jrrrr1r 111|717 1 :\ T ! T 1 T 17T 7”7 L L N O s sy i B | \:
| o | 0.9 g
i 1 08) ]
2 1 0.7 ]
520 <D z
SN F 1
g - 1 =06 F B
=] | 1 2 F .
= s 051 =
=R 1B T g
= N 1 8 04 =
S0 1< L0 ]
O L a —— Opl(density=0.3,a=1.0) || 0.3 = ——— Opl(density=0.3,a=1.0) ||
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Q \} Q Q \ Q Q Q \} Q Q Q

DA S N D N RN

NS

# Samples # Samples

Figure 6: Cumulative loss (left) and accuracy (right) on the Counter stream.

The first observation from the cumulative loss plot on the left is that the errors and
loss rapidly decrease with time. This is the expected behaviour for a randomly generated
sequence that follows a normal distribution: the more samples we generate the less chance
of an unseen sequence (giving ESHT ability to learn already seen sequences). From the
accuracy plot on the right of Figure 6 we conclude that an accuracy of 0.9 is achieved
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with only a few hundred samples (200 in this specific configuration of the « and density
parameters); in other words, almost all loss is incurred on the first few hundreds of samples,
and after this, the loss stabilizes. Some of the results have a temporal accuracy of 1 for
the first item; this is due to the first item in the input-stream being always zero and so its
label, and the ESHT always outputs a zero for the first element.

Figure 7 shows the influence of the o and density parameters in the accuracy. In both
plots, the horizontal axis shows the variation of one of the parameters while the box plot
shows the variation of the other parameter (with values inside the box that have an accuracy
with the standard deviation). The plot on the left shows that there is a monotonic growth
of the accuracy with parameter «; lower values for a place relatively more importance on
older reservoir states (see Eq.2), which has the effect that it takes longer for the model
to learn new sequences. In this same plot, the influence of density seems to have a less
relevant influence. In fact the plot on the right shows that there is no clear correlation
between density and accuracy. The outliers in that plot correspond to the low values of «
that were already commented in the previous plot.

1 TTT T[T T T T T T T T[T T T [T T T T[T I T[T T TTT T [TITI[TIrrIT
17 ‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\7 |- I I I I I [ [ [ [ I |
; s==%++2| | pooBB5=nBT |
0.9 ES 1 0.9 .
i T ! P e
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g - S I ° 1
¢ k 1 & k |
5 07 12 07p B
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13} [ 1 3 L ]
= i |1 =< I 1
I ] 0.6 [ -
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NSRRI ENRSIRCINN NENEVECEAE RN NS

Alpha () Density (%)

Figure 7: Influence of parameters « and density on the Counter stream. In each figure, the
box plot shows the influence of the other parameter.

4.2. lastIndexOf

Figure 8 shows the output of the lastIndexOf function (which is how this function is known
to Java programmers). Given a sequence of input symbols, the function returns for each
symbol the relative position of the last occurrence of the same symbol (i.e. how many time
steps ago the symbol was last observed). Note that for each time-step all symbols but the
current one are one step farther, thus, generating a highly dynamic output.

The input stream is a sequence of symbols of an alphabet randomly generated following
a normal distribution. Sequences of up to 10,000 samples and alphabets of 2, 3 and 4
symbols have been used to perform the evaluation of ESHT in terms of accuracy.
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T=0 [ T=1 | T=2 | T=3 | T=4 | T=5 | T=6 | T=7

INPUT
|:>ABBABAAA

LABEL

lastindexOf
GENERATOR

Figure 8: lastIndexOf generation function

As the number of symbols in the alphabet grows more samples are needed to learn a
pattern, since the number of combinations grows exponentially with the number of symbols.
Figure 9 shows this trend for two different pairs of values a and density. Alphabets with 2
and 3 symbols are relatively simple to be learnt (the ESHT achieved 80+% accuracy with
only 1,000 samples) while with a 4-symbols alphabet the ESHT needed 10,000 samples to
achieve 75% accuracy.
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Figure 9: Accuracy for the lastIndezOf function for alphabets with 2, 3 and 4 symbols.

From a visual inspection on the ESL output we observed that a relatively small number
of samples were needed to saturate the output signal. To delay this saturation we decided to
use a vector of features (one element for each symbol) as the input instead of a scalar value.
The position corresponding to the current symbol index is set equal to 0.5 and the rest equal
to zero. This way, the input signal to the FIMT-DD has different levels (in contrast to the
saturated signal observed when using a scalar input). Figure 10 shows the improvement of
using a vector instead of scalar input for different values of the a hyper-parameter. For the
rest of the evaluations in this subsection we will use the vector input.

Figure 11 shows the influence of the o and density hyper-parameters on the accuracy.
In both plots, the horizontal axis shows the variation of one of the parameters and different
lines are used to show the variation of the other parameter. From the plot on the left it

10
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Figure 10: Effect on the accuracy of coding the input to lastIndexOf as a scalar or a vector
of features (density=0.4)

is clear the monotonic growth of the accuracy with parameter . In this same plot, the
influence of density seems to have a less relevant influence if the value of alpha is correctly
set. In fact the plot on the right shows that there is not a clear correlation between density
and accuracy. Similarly, one could predict a similar conclusion when changing the number
of neurons in the ESL.
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Figure 11: Effect of alpha and density on the accuracy for lastIndexOf

4.3. emailFilter

The emailFilter function labels the input stream with the length of the email address
detected or 0 otherwise (including wrong formatted email address). For the evaluation of
the ESHT and comparison with previous proposals we use a synthetic dataset based on
the 20 newsgroups dataset, that comprises around 18,000 newsgroups posts on 20 topics
[Lang (2008)]. We extracted a total of 590 characters and repeated them eight times.
Each repetition, or block, contains 11 email addresses and random text (including wrong
formatted email addresses) at the same proportion. The resulting dataset has a label balance
of 97.8% zeros.

11
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Based on the conclusion from Section 4.2, we decided to represent the input as a vector
of features, one for each symbol in the alphabet. However, this would require a vector
for an ASCII encoded input, which would increase the memory consumption (larger input
matrix on the ESL) and would require more samples to abstract a pattern. To speed up the
learning process we reduced the input space to only four symbols, those strictly necessary
to identify a correctly formatted email address. Table 1 shows the map used to create the 4-
symbols dataset. The reduced input vector implies faster vector-matrix multiplication (low
dimensionality) and less memory consumption (due to smaller matrix size). In addition,
the reduced input space improves the learning speed.

Table 1: Map from ASCII domain to 4-symbols

ASCII Domain 4-Symbols Domain
Original Symbols | Target Symbol | Target Symbol Index

[\ t\n\r ]+ Single space 0

[a—2zA—Z0—9] X 1

Q Q@ 2

[.]+ Single dot 3

For the comparison we configured the different algorithms (FIMT-DD, feed-forward NN,
ESN and ESHT) as shown in Table 2. For the ESN we explored different values for the «,
density and learning rate hyper-parameters in the range [0.1, 1.0] and linear output. For the
standard NN we also explored values for the learning rate in the same range. In order to
configure ESHT, we used the results obtained for Counter Opt2 in section 4.1, with o = 1.0
and density=0.4. We increased the number of neurons to 4,000.

Table 2: Email address detector results

Algorithm | Density @«  Learning rate Loss # Errors  Accuracy (%)
FIMT-DD - - - 4,119.7 336 91.61
NN - - 0.8 2,760 88 97.80
ESN1 0.2 1.0 0.1 1,032 57 98.47
ESN2 0.7 1.0 0.1 850 61 98.47
ESHT 0.1 1.0 - 180 10 99.75

The first conclusion from the results shown in Table 2 is the well known inability of
both FIMT-DD and NN to capture time dependencies in the input. The NN defaults to the
majority class (always predicts a 0 symbol), achieving 97.80% of accuracy (88 errors, the
total number of correct email addresses in the dataset input) with loss of 2,760 (the total
length of the correct emails in the dataset input). The FIMT-DD obtains a worse accuracy
(91.61% with loss 4,119.70).

ESHT clearly outperforms the two best configurations obtained for ESN, with only 10
errors and a cumulative loss of 180 (compared to around 60 errors and cumulative error
around 1,000 in ESN). In order to better understand the results shown in Table 2 for ESN
and ESHT, the left plot in Figure 12 shows the cumulative loss evolution with the number
of samples in the input. After eight repetitions the ESN failed to get right all the 11 emails
in the same block (observe how the cumulative loss continues to grow with the number of
samples). The ESHT clearly outperforms the ESN with only 500 samples; after this number
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of samples, the plot shows a constant loss for the ESHT between 500 and 1,000 samples (this
is an effect of the plot scale, in this range the loss grows, but after this it stays constant).
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|| —— ESN1 1 E 1
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Figure 12: Cumulative loss (left) and accuracy (right) evolution for emailFilter

The right plot in Figure 12 shows the evolution of the accuracy of ESN and ESHT
with the number of samples in the input. Observe that the three curves start with 100%
accuracy; this is due to the fact that the first label is zero, and all tests started biased to
Zero.

5. Conclusions and Future Work

This paper proposes a novel architecture, the Echo State Hoeffding Tree (ESHT), to learn
temporal dependencies in data streams in real-time. The proposal is based on the combi-
nation of the reservoir in the Echo State Network (ESN) and a FIMT-DD regressor tree.
The paper also evaluates the proposed architecture with a proof-of-concept implementation
and three string-based input sequences generated by functions typically implemented by a
programmer. ESHT is able to learn faster than standard ESN, and requires less hyper-
parameters to be tuned (only two). The hyper-parameters required by the ESHT have a
more predictable effect on the final accuracy than the hyper-parameters in typical neural
networks (such as learning rate or momentum). The comparison with a standard feed-
forward neural network and the FIMT-DD itself shows the ability to capture the temporal
dependencies in data streams that these other two architectures are unable to capture.

The paper also shows the ability of the ESHT to learn functions typically implemented
by programmers, opening the door to explore the possibilities of Learning Functions instead
of programming them.

The current proof-of-concept implementation of our architecture limits the number of
samples that we can use in our tests (due to the large execution time). We are currently
reimplementing the proposed ESHT in order to be able to use much larger input sequences
and properly study the effects of the initial state vanishing in long runs. Controlling the
time-window stored in ESL is an interesting feature for data-streams, specially in scenarios
where drifting is present.
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