Random Forests of Very Fast Decision Trees on GPU
for Mining Evolving Big Data Streams

Diego Marron' and Albert Bifet> and Gianmarco De Francisci Morales®

Abstract. Random Forest is a classical ensemble method used to
improve the performance of single tree classifiers. It is able to obtain
superior performance by increasing the diversity of the single clas-
sifiers. However, in the more challenging context of evolving data
streams, the classifier has also to be adaptive and work under very
strict constraints of space and time. Furthermore, the computational
load of using a large number of classifiers can make its application
extremely expensive.

In this work, we present a method for building Random Forests
that use Very Fast Decision Trees for data streams on GPUs. We show
how this method can benefit from the massive parallel architecture
of GPUs, which are becoming an efficient hardware alternative to
large clusters of computers. Moreover, our algorithm minimizes the
communication between CPU and GPU by building the trees directly
inside the GPU. We run an empirical evaluation and compare our
method to two well know machine learning frameworks, VFML and
MOA. Random Forests on the GPU are at least 300x faster while
maintaining a similar accuracy.

1 INTRODUCTION

Data has become predominant in our modern information society, so
much that people often describe it as “the new oil’ﬂ However, data
without a model to understand it is just noise. The large amount of
data available poses new challenges to computational methods that
try to extract knowledge and models from data. In particular, in this
work we focus on the challenges in analyzing big data streams.

There is an increasing need for more computational power to pro-
cess large amounts of data in near real-time. The need to scale data
analysis to ever growing big data streams motivates exploring differ-
ent possible routes, both algorithmic and architectural. In this paper,
we explore the usage of Graphics Processing Units (GPUs) to appli-
cations of data stream mining.

Recently, GPUs moved from a simple role of 3D accelerators to a
more general purpose of mathematical co-processors (GPGPU, Gen-
eral Purpose Graphics Processing Unit). A GPU provides a massively
parallel architecture with many cores (up to 2880 cores in most re-
cent modelf]) and is throughput oriented. Additionally, GPUs have
better performance-per-watt than CPUs; it is not a coincidence that
the top 10 entries of the GreeHSO(ﬂ all use GPUs.

1 Yahoo Labs, Barcelona, Spain; email: diegom @yahoo-inc.com

2 HUAWEI Noah’s Ark Lab, Hong Kong; email: bifet.albert@huawei.com

3 Yahoo Labs, Barcelona, Spain; email: gdfm@yahoo-inc.com

4 http://www.forbes.com/sites/perryrotella/2012/04/
02/is-data-the-new—-oil

5http://www.nvidia.com/object/tesla-servers.html

S http://www.green500.0rg/lists/green201311

With the raise of GPUs as a general purpose platform that pro-
vides high throughput computation, researchers have started to ex-
plore their use in high performance data mining. Deep Learning is
an example of a hugely successful application of GPUs to large scale
batch learning [4]. Therefore, it is interesting and challenging to see
whether and how we can draw benefits from such an architecture in
a streaming context.

In this work, we focus on one of the most common data mining
applications: classification. In particular, we study how to effectively
deploy decision trees and random forests for data streams on GPUs.
These models are very popular in machine learning, but, perhaps sur-
prisingly, to the best of our knowledge their streaming deployment on
GPUs has not been studied in the literature.

The paper is structured as follows. We present related work in Sec-
tion2] a brief introduction to CUDA in Section[3] and our GPU Very
Fast Decision Tree in Section[d] and GPU Random Forest for evolv-
ing streams in Section [5] In Section [§] we report on their empirical
evaluation, and finally we draw conclusions in Section|[7]

2 RELATED WORK

The Very Fast Decision Tree or Hoeffding Tree [3] is the current state-
of-the-art method for building decision trees on data streams, which
uses a tree as the main data structure.

The main challenge while working with recursive data structures,
such as trees, is they are designed to be built sequentially, i.e., you
need to build the parent node before building the child node. Further-
more, trees are not linear so it is hard to divide its construction in
independent unit of works and later combine their result.

Early works, such [6} 9] use a GPU to accelerate the traversing
of a k-d tree pre-built on a CPU. A novel method for traversing k-
d trees for ray tracing is presented in [15]. Their method is able to
reach peaks of 16 million rays per second with reasonably complex
scenes by dividing the tree into smaller trees. The authors of [12]
introduce an in-place method for constructing radix-trees in parallel.
This radix-tree is used later as a building block to construct octrees
and k-d trees.

Recent works are focusing on applying general transformations.
For example, the authors of [[7] propose new techniques (“autoropes”
and “lockstepping”) to traverse irregular trees.

Random Forests on GPU in a non-streaming scenario were intro-
duced in [8], where the authors describe the training and classifica-
tion phases that run inside the GPU using one thread per tree, needing
a high number of trees in order to achieve a good performance. An-
other recent work on GPU Random Forests in the batch setting is
[13], that presents a library in python to build random forests inside
the GPU hybrid depth/breath first search approach.

http://www.forbes.com/sites/perryrotella/2012/04/02/is-data-the-new-oil
http://www.forbes.com/sites/perryrotella/2012/04/02/is-data-the-new-oil
http://www.nvidia.com/object/tesla-servers.html
http://www.green500.org/lists/green201311

3 CUDA Basics

In CUDA, the kernel or code running on the GPU is divided in blocks
of threads executed inside a stream multiprocessor. Each block of
threads can obtain 3D space coordinates to form a grid depending on
needs. Inside each block of threads, execution is divided into smaller
units of 32 threads called a warp. Threads inside a block can also ob-
tain 3D space coordinates independently of the ones the block have.

The global memory in CUDA is the largest amount of memory
available and the one with highest latency. Inside each processor,
there is a small amount of memory that can be used as shared or
L1 cache visible to all threads on the same block, whose size varies
depending on the GPU architecture. Processors contain a register file
which is private to each thread.

The performance of a kernel depends on the number of threads
running on the GPU. GPUs suffer on latency-oriented operations,
but try to hide latency by re-scheduling threads waiting for 10 op-
erations. A context switch between warps on the same processor is
virtually free as it only takes one cycle.

4 VERY FAST DECISION TREES ON GPUs

In this section we present GVFDT, our implementation of the VFDT
on the GPU. We assume the reader is already familiar with decision
tree algorithms and with the VFDT.

An analysis of the VEDT reveals the algorithm has 3 basic phases:

1. Learning phase. This phase includes tree traversal in order to find
the correct leaf node, class computation and increment of counters
for label-attribute-value triplets.

2. Heuristic computation (e.g., entropy or information gain) for each
attribute at each leaf node.

3. Model growth, if needed. This phase executes if the delta between
the heuristic of the two best attributes is above a threshold. During
this phase, a leaf node is split into two new leaf nodes.

Before explaining the parallel design for these phases, we proceed
to define a suitable data structure layout for the tree, as this is the
basis for the algorithm and also a very important design decision.

4.1 Tree Layout

The tree is the main data structure used by the GVFDT. Tree traver-
sal is the main operation, as it is performed at both learning and pre-
diction time. The main challenge is that tree traversal is inherently
sequential: one needs to know the decision at the parent node in or-
der the get to the correct child. However, GPUs perform poorly on
latency-sensitive operations. In order to hide latency, GPU programs
run a large number of threads in parallel to maximize throughput.
Therefore, the tree layout needs to allow for having a large number
threads traversing the tree at the same time.

For simplicity, we only consider binary attributes in the layout, as
in the original decision tree algorithm. In this case the decision tree
becomes a binary tree. This choice lets us use a simple regular data
structure to represent the tree: an array. Our tree structure is based in
the one in [L1]. It uses a breadth-first traversal to encode the binary
tree in a single array, level by level. Hence, we can use a basic binary
tree search algorithm to traverse the tree. An example of the encoding
for a tree with two attributes in depicted Figure[T}

Each tree node is encoded as a 32-bit unsigned integer that con-
tains an id of 31 bits and a one bit flag. This number corresponds to
the maximum number of execution blocks available on the X axis in

level0: levell level 2
| al l\eaf0| a2 l 0 ‘ 0 |Ieal||\eaf2‘
10 31 i 0

2 K NN 1)

leaf 2 encode

al encode

Figure 1: GVFDT tree encoding

the GPU (216 for Z and Y axis). The meaning of this id depends on
the flag value: if the flag is 1, the node is a leaf and the id is a leaf id,
if the flag is O the node is an internal node and the id represents an
attribute id. With this layout it is easy to obtain the child offset of the
child nodes of any given node. Given a node at offset 1, its left child
will be at offset 2¢ + 1 and its right child will be at offset 2¢ 4 2.
GVEFDT allocates the memory for the full tree. This very simple
design favors speed over space. As we will see in Section[6} this can
easily become the bottleneck of the algorithm as the tree grows. In
this study we resort to ensembles as detailed in Section [5]to sidestep
the problem. A memory-efficient tree implementation on GPUs re-
quires a more sophisticated design, which we defer to further studies.

4.2 Tree Leaves

Figure 2] illustrates the two supporting arrays for the GVFDT. The
first one is the “leaf class”, which stores the class for a given leaf.
The second one, “leaf back”, is used as a reverse pointer to map a
leaf id to an offset in the tree array. We use the latter map when
managing the counters and checking if the tree needs to be grown.

The id at each leaf node is used as an offset in the leaf class array
in order to get the leaf class label and the corresponding counters.
This design decouples the tree representation from actual leaves and
counters. In addition, we can reuse leaf ids when splitting the tree
and thus keep the supporting arrays compact and fully utilized.

All relevant information is stored at leaves rather than internal
nodes. Hence, the tree is just a routing data structure whose only pur-
pose is to reach to a leaf id given a data instance. Keeping separate
data structures to store counters and class labels allows to decouple
them from the tree structure. Therefore, we can compute the majority
class of a leaf and its split heuristic independently and in parallel.

Finally, when splitting a leaf node, the only extra information we
need is a way to go back to the tree offset given its leaf id. The “leaf
back” array serves exactly this purpose. If the algorithm decides to
split a node, it replaces the leaf node by an internal node and adds
two leaf nodes. However, we only need to allocate one new leaf node
as we can reuse the previous leaf node id.

4.3 Learning Phase

This first phase can be divided in 3 smaller steps: (1) tree traversal,
(2) counter increase, and (3) class computation.

Traversing the tree means finding the leaf id corresponding to the
instance being processed. This step is illustrated in Figure[3] To tra-
verse the tree, a 1D reference system is used inside the block. A
thread is assigned to one instance using the y-axis. Using a separate
kernel for the tree traversal is easier as we can force all work to be
done at once. This may be not enough to completely hide latency but
it will help, and hopefully we can benefit from some cache effects.

The output of this step is a vector with as many positions as in-
stances, each containing the class for the instance at that position.

@f
‘ cl ‘ c0 ‘ cl | ‘ 0 ‘ leaf class

‘Iearl‘lear2‘lear0| ‘ 0 ‘ leaf back

Figure 2: GVFDT leaf class and back pointer

Inst0 faon{at|a2|a3 T leaf 2 l.counters 0
Inst1 |a0|al|a2|ad w |ai leaf 0 5% l.counters 1
Inst2 |al|al|a2|ad ai [leaf 1 l.counters 2
Instn |al|al|a2|ad ai leaf 2 l.counters L

Figure 3: Learning step: getting leaf ids.

Figure [] shows the 2D leaf-counter layout with four rows used by
GVEDT. Each leaf counter is represented by a block inside the grid,
and uses one thread for each attribute ¢ and value j. Row 0 stores the
total number of times value n;; appeared, rows 2 and 3 store partial
counters n;;x for each class k. Row 1 is a mask that keeps track of
which attributes have been already used in internal nodes along the
path to this leaf. This binary mask avoids the need for an explicit
check on the tree.

For efficiency, rather than computing the heuristic for model
growth for each instance, the algorithm does so only every nmin
instances. Therefore, the algorithm can increase a large number of
counters in parallel at the same time. Increasing the counters can be
highly parallel as each value is totally independent from the others.
At first glance this step may seem embarrassingly parallel. However,
there might be overlap between the set of counters increased by dif-
ferent thread. Therefore some kind of synchronization is needed. We
resort to a parallel reduction approach for this step.

4.4 Heuristic: Information Gain

In this second phase, the algorithm neither depends on the number of
instances nor needs to perform a tree traversal. It can run the heuristic
to choose an attribute to split in parallel for all leaves. In this work
we use information gain as heuristic.

We choose to parallelize the information gain in GVFDT using 2
parallel reductions. Figure [5] illustrates how these reductions work.
The first reduction step, in red, is where each thread calculates all
the inner partial information gains I; ;5 for each attribute-value-class
triplet. Then, a parallel reduction computes the corresponding I;; us-
ing atomic additions. The second reduction step, in yellow, similarly
combines the results, where threads now combine each I;; to obtain
the final I; for each attribute.

This phase uses a 1D grid layout, mapping each leaf-counter to
one block on the x-axis. It calculates all counters at the same time,
whether it has been allocated for a leaf or not.

nij a00|a01|a10|a11| .. | .. |20 |a&al| RowoO
mask moo|mat {m10|m11 mi0 [mi1 | Row 1
nijo a00|a01|a10f{al1| | a0 | ai Row 2
nij1 a00|a01|a10f{at1| .. | .. | ai0| ail Row 3

Figure 4: 2D organization of the leaf counters.

a a @i, o ,;
_”mu o oo _%on log 11 _ im’ i . .ﬂl“”

dgy gy ag g iy i @5

LTH

i)

L

[7 | 5 |

o]

Figure 5: Parallel computation of information gain.

Inside each block we only need one dimension for each possible
attribute value. As all attributes are binary, a block needs as much
threads as twice the number of attributes and it uses the x-axis only as
reference. We do not need a 2D reference per counter, as one thread
uses the whole column. In Figure [5]the red step illustrates how each
thread only uses the a;;x (rows 2 and 3) and the a;; (row 0) values
on the same column.

The GPU works on all counters at the same time. It enables or dis-
ables attributes without branching by using row 1 as a logical and
mask. Each thread uses this mask on the values from its columns, to
zero out unused attributes in the path to the given leaf. There are two
risky situations the algorithm needs to care about: a division by zero
and the log20. The CUDA compiler can use a fast floating point op-
erations, or the standard IEEE-754 floating point operation (the one
we are using). According the the standard, a division % will return
a NaN (Not a Number). The same way according the NVIDIA log
man page, a log20 will return a —oo, or NaN if z < 0.

To avoid an explicit check on these values we decided to use the
ISA PTX instruction max.f32, which receives two parameters and if
one of them is a NaN returns the other.

One modification we did in the red step is instead of calculate each
I;; and then multiply it by “2, the algorithm do this multiplication
while calculating each I;;5. As it has already accessed these values
to calculate all I;;; it will not cost much but it simplifies the next
step (the yellow one in Figure3).

The second reduction is a simple parallel reduction of sums. The
easy way of doing this is with atomic additions using an inverse map
to map a counter offset to an attribute. That is, the offsets 0 and 1
(counter position 0 and 1) will be mapped to O (attribute 0), and so on.
The output to this kernel is a vector with the attributes information
gain values for all leaves, including the unused ones.

10 attributes Instances

3 random atirs 3 random atirs

al a6 /0 a. ad ad
a3 a7
Tree 0 Tree 99

Per-tree voles | c0 ‘ | c1 ‘

Combine voles using weight 1.0

Final prediction

Figure 6: Ensemble of 100 trees with random attributes.

4.5 Node Split

The node split is the third phase we identified in Section[d] After the
heuristic calculation, the algorithm needs to decide whether it is time
to split a leaf. This phase takes as input a vector with the attribute
information gain for all leaves.

The layout for the grid in this phase is the same as the one ex-
plained for the heuristic calculations. The algorithm uses one block
per leaf and does the check for all leaf-counters at the same time.

At each block, the kernel brings all attributes to shared memory
to perform a variant of a parallel sort. However, the sort uses two
vectors: one for the actual value and the other with the attribute id
of the value at the same position. The swaps needed by the sorting
algorithm are performed on both vectors at the same time.

A parallel sort is more efficient than a linear scan on a GPU as
we need only a logarithmic number of cycles to perform it. This step
could also be implemented more efficiently on modern GPU archi-
tectures with a parallel linear scan and a parallel reduction, but the
difference is not high and we opted for a more convenient solution.

Once the sorting is completed, we know the two best attributes and
their corresponding values are at positions 0 and 1 in both vectors.
By using the Hoeffding bound the algorithm can decide whether the
node needs to be split.

The decision if a split is needed or not is saved using a vector
which has one position per leaf. Each of this positions are encoded
following the same way as in Figure[I] Here if the flag is 1 it means
the node needs to be split and the id refers to the attribute id where
to split, otherwise no split is needed and we can ignore the id.

5 RANDOM FORESTS ON GPUs

Breiman [3] proposed Random Forests as a method to use random-
ization on the input and on the internal construction of the decision
trees. Random Forests are ensembles of trees with the following char-
acteristics: the input training set is obtained by sampling with re-
placement, the nodes of the tree only may use a fixed number of
random attributes to split, and the trees are grown without pruning.

We use the square root of the total number of attributes as the
number of random attributes to split, as proposed by Breiman. Figure
[6] shows an example of instances with 10 attributes, where each tree
node is using v/10 = 3 attributes each. Each tree has its own space
(blue clouds) and is built independently from the other trees.

Our adaptive implementation uses GVFDT as a base learner, on-
line bagging [14] to sample instances for each tree, and ADWIN [[1]
to detect changes in the accuracy of the ensemble members, so that
trees that decrease in accuracy can be replaced with new ones.

row 0 row 1
|nua‘ ‘ nij |mon‘ ‘mu nmm|nmn‘

‘nul‘ Single leaf counter

Single GVFD counters

[1eaf 0 counters leaf | counters | counters for all the ree

Ensemble 100 GVFD counters

[Tree 0 Counters | [Tree 99 Counters |

Figure 7: Counters for all tree in the ensemble.

In batch mode, bagging builds a set of M base models, training
each model with a bootstrap sample of size N created by drawing
random samples with replacement from the original training set. The
training set for each base model contains each of the original training
example K times where P(K = k) follows a binomial distribution.
This binomial distribution for large values of N tends to a Poisson(1)
distribution, where Poisson(1)= exp(—1)/k!. We use this approach
to give each example a weight according to Poisson(1).

In our implementation we need to update all attributes of the
same instance by using the same weight. Rather than doing it while
increasing counters, we perform this operation right after the tree
traversal, as in this step we only use one thread per instance. We use
an extra vector for each instance and tree to store the random Poisson
weight. Hence, when increasing the counters each thread only needs
to use its y-axis coordinate to obtain the value on this new vector.

Finally, each tree gives a prediction vote for each class label. The
ensemble combines all these votes by using a simple parallel reduc-
tion to aggregate them and pick the most frequent one.

To implement the ensemble on the GPU, we extend the grid layout
to use the z-axis. Each single GVFDT uses a 1D or 2D grid layout,
with 1D or 2D components inside the blocks. In turn, each single
GVEFDT lives inside a 2D plane. They can be seen as M independent
2D planes that use the z coordinate as the tree id.

In GVEDT despite using 2D reference systems, all data structures
are single arrays, and kernels use an offset to the position inside the
array. Rather than making M copies of these data structures, we just
make these arrays large enough to hold data for M trees. Thus, we
can easily adapt the GVFDT to run on an ensemble of M trees. In
Figure[7lwe show how counters are extended to be used in ensembles.

GVEDT kernels receives as parameters the pointers to the start of
each data structure the kernel needs. In ensembles, we introduce an
intermediate step were each kernel uses the grid z coordinate to get
the offset to the beginning of its data structure. Hence, the GVFDT
kernels can be called without further modifications.

6 EXPERIMENTAL EVALUATION

We compare GVFDT and GPU Random Forests to similar methods
available in MOA [2] and VFML [10]. MOA is a data stream frame-
work developed in Java at the University of Waikato, New Zealand.
VEFML is a toolkit in C for mining evolving data streams developed
at the University of Washington, US.

Both MOA and VFML were used on a system with Intel
Core2Duo E6000 @ 2.4GHz. We run the GPU experiments on a
computer provided by BSC/UPC CUDA Center of Excellenc with
the following configuration: 2x Dual-Core AMD Opteron Proces-
sor 2222, 8GB RAM, Debian Linux OS, Kernel 3.12-1-amd64 SMP,
CUDA compilation tools v5.5.0, and NVIDIA Tesla C2050.

We use three datasets to evaluate our design:

7Thttp://ccoe.ac.upc.edu

http://ccoe.ac.upc.edu

1. The Covertype Dataset has 581 012 instances with 55 attributes
and seven different classes with concept drift. We use only 45 of
these attributes that are binary.

2. The Record Linkage Comparison Patterns Dataset (REC) origi-
nally has 5749132 instances with 9 attributes and 2 classes. In
this dataset, two of the nine attributes have continuous values. We
convert them to binary attributes by computing their quartiles and
encoding the values according to their quartile range.

3. RandomTree (RT) generates 1000000 instances with 10 binary
attributes, 2 classes, 5 levels and 20% of noise. This dataset is cre-
ated with the original VFDT data stream generator [S]] that pro-
duces concepts that should favor decision tree learners.

6.1 Accuracy Evaluation

We use two metrics for measuring the evaluation performance: ac-
curacy and speed. Accuracy refers to the number of correctly clas-
sified instances divided by the total number of instances used in the
evaluation. Speed refers to the time the model needs to process all
instances from a dataset. We use prequential evaluation to measure
the model accuracy over time. Prequential evaluation uses each in-
stance first to test the model, and then to train it. With the informa-
tion obtained from testing, we plot a learning curve to observe how
the model evolves over time.

6.1.1 Single Tree Accuracy Comparison

First, we compare GVFDT with the single decision trees in VFML
and MOA. A summary of the results are in Table[I] We were not able
to evaluate GVFDT using the Covertype Dataset, as we could not
allocate 2% unsigned integer positions for the entire tree. Also, this
dataset contains concept drift which is not supported by VEML hence
MOA has better accuracy. For the Record Linkage Comparison Pat-
terns Dataset (REC) MOA obtains the best result with an accuracy of
99.62%, followed by VFML and GVFDT. However, the differences
are very small. Also on the RT synthetic dataset, the three decision
trees also get very similar performances: VEML obtained (69.03%)
followed by MOA with (68.82%) and GVFDT close to it (68.41%).

Table 1: Single tree accuracy comparison.

Table 2: Random Forest accuracy comparison.

VFML MOA GVFDT
Covertype || 69.29 76.34 -
REC 99.59 99.62 99.20
RT 69.03 68.82 68.41

6.1.2 Random Forest Accuracy Comparison

We could not use VFML in our Random Forest experiments, since
VEML does not include any ensemble method. We use 100 random
trees with the square root of the number of attributes as the fixed
number of random attributes to split.

Table 2] summarizes the accuracy test for all datasets. The first
thing to observe is that ensembles improve the performance results
compared to single trees. GPU Random Forest is able to obtain the
same accuracy as MOA (99.80%) when using the REC dataset. For
the other two datasets MOA is slightly better than GPU Random
Forests; for the Covertype dataset MOA obtains 77.93% and GPU
Random Forests 77.55%, and for the RT dataset MOA obtains a
69.13% and GPU Random Forests 69%.

MOA GPU Random Forest

Covertype || 77.93 77.55

REC 99.80 99.80

RT 69.13 69.00

90

851t .
§ 80 |- E 8

75| i

0 1 2 3 4 5 6
Instances -10°
(- - MOA - GPU Random Forest |

Figure 8: Random Forests: Learning curve comparison for the Cover-
type dataset.

Figure [8] shows the learning curve for the Covertype Dataset for
MOA and GPU Random Forests. Both curves are similar, they start
with good accuracy, but soon both curves drop and stay between 75-
80% until half of the stream is reached. After this point, both con-
verge to the same accuracy value.

Figure[9]shows the learning curve for the REC Dataset. Both MOA
and GPU Random Forests have almost identical curves. Both imple-
mentations needs a small number of instances to converge.

100 T T

T T
L e s e

:c
53
T
|

accuracy

96 |- o

Instances -10°

[- = MOA e GPU Random Forest]

Figure 9: Random Forests: Learning curve comparison for the REC
dataset.

Figure [I0] shows the learning curve for the RT dataset. MOA and
GPU Random Forests have a similar curve, converging faster than
when using single trees.

6.2 Speed Evaluation

We perform a speed test to compare the new GPU methods with the
CPU ones. The setting for these tests is the same as within accuracy,
using the prequential learning for MOA, VFML, and GVFDT. We
first compare single tree speeds, and then Random Forest speeds.

6.2.1 Single Tree Speed Evaluation

Table 3] shows the speed test results for single trees. The surprising
results in this table is the performance of VFML compared to MOA:
it takes about 15 minutes to process the REC dataset, and about 7
minutes to process the RT dataset. As expected, GVFDT performs
better than MOA and VFML with an speedup of 22x for the REC
dataset, and 25x for the RT dataset. As in Section|6.1.1} we could not

70 - |

accuracy
3,

60

6
Instances 10

[- = MOA -eeee GPU Random Forest]

Figure 10: Random Forests: Learning curve comparison for the RT
dataset.

test the Covertype dataset for a single tree due to the limitations in
our design regarding memory requirements.

Table 3: Single tree VFML vs MOA vs GVFDT speed comparison.

VFML MOA GVEDT || Speedup
Cov 107s 8.2s - -
REC 902s 21.9s 0.98s 22x
RT 422s 6.5s 0.25s 25x

6.2.2 Random Forest Speed Evaluation

Results for an ensemble of 100 random trees is shown in Table 4] We
can see that GPU Random Forests clearly outperforms MOA for all
three datasets, being up to 1300x faster than MOA for the RT dataset.

Table 4: Comparison of the speed of MOA Random Forest vs GPU
Random Forest.

MOA GPUREF || Speedup
Cov 363s 0.330s 1000x
REC || 1778s 5.740s 309x
RT 795s 0.597s 1300x

In this test, 100 random trees run on the GPU at the same time,
thus generating more threads for the GPU to schedule. The higher
the number of threads available to run contemporarily on the GPU,
the better its latency gets hidden. Compared to a single GVFDT tree,
ensembles are 2—-5 times slower, but obtain higher accuracy.

Figure [11]shows how MOA and GPU Random Forests scale with
the number of instances of the REC dataset. In this dataset MOA
scales linearly while GPU Random Forests seems to scale almost
constantly. This is an effect of the scale, as GPU Random Forests
runs in milliseconds instead of minutes. In summary, we can appre-
ciate that GPU Random Forests performs much better than MOA
Random Forests for all three datasets.

7 CONCLUSIONS

In this paper we presented efficient streaming Very Fast Decision
Trees and Random Forests algorithms designed for the GPU. We
started by identifying the phases of execution of the decision tree
algorithm, extended them horizontally to increase parallelism, and
studied how each of them could be implemented on the GPU. Our
streaming Random Forest algorithm uses a per-tree adaptive mech-
anism to detect changes on the stream so it can react to it. These
new methods minimize the communication between the GPU and
the CPU to the point that they only need to communicate when the

time (ms)

Instances 10°

[-------- MOA - - - - GPU Random Forest]

Figure 11: Random Forest running time using the REC dataset.

CPU has new instances to process and when the GPU sends the re-
sults back to the CPU. We showed how using our adaptive streaming
Random Forest on GPUs, speed increases at least 300x. This huge
improvement in speed using GPUs opens new exciting possibilities
for future research on streaming machine learning.

REFERENCES

[1] Albert Bifet and Ricard Gavalda, ‘Learning from time-
changing data with adaptive windowing’, in In SIAM Interna-
tional Conference on Data Mining, (2007).

[2] Albert Bifet, Geoff Holmes, Richard Kirkby, and Bernhard
Pfahringer, ‘MOA: Massive Online Analysis’, Journal of Ma-
chine Learning Research (JMLR), (2010).

[3] Leo Breiman, ‘Random forests’, Machine Learning, 45(1), 5—
32, (2001).

[4] Adam Coates, Brody Huval, Tao Wang, David J. Wu, Bryan C.
Catanzaro, and Andrew Y. Ng, ‘Deep learning with cots hpc
systems’, in ICML (3), pp. 1337-1345, (2013).

[5] Pedro Domingos and Geoff Hulten, ‘Mining high-speed data
streams’, in ACM SIGKDD, KDD 00, pp. 71-80, (2000).

[6] Tim Foley and Jeremy Sugerman, ‘KD-tree Acceleration Struc-
tures for a GPU Raytracer’, HWWS °05, pp. 15-22, (2005).

[7] Michael Goldfarb, Youngjoon Jo, and Milind Kulkarni, ‘Gen-
eral Transformations for GPU Execution of Tree Traversals’,
SC ’13, pp. 10:1-10:12, (2013).

[8] Hakan Grahn, Niklas Lavesson, Mikael Hellborg Lapajne, and
Daniel Slat, ‘CudaRF: A CUDA-based Implementation of Ran-
dom Forests’, AICCSA ’11, pp. 95-101, (2011).

[9] Daniel Reiter Horn, Jeremy Sugerman, Mike Houston, and Pat
Hanrahan, ‘Interactive K-d Tree GPU Raytracing’, I3D *07, pp.
167-174, New York, NY, USA, (2007). ACM.

[10] Geoff Hulten and Pedro Domingos. VFML - a toolkit for min-
ing high-speed time-changing data streams, 2003.

[11] G. Jacobson, ‘Space-efficient static trees and graphs’, SFCS
>89, pp. 549-554, (1989).

[12] Tero Karras, ‘Maximizing Parallelism in the Construction of
BVHs, Octrees, and K-d Trees’, in ACM SIGGRAPH, EGGH-
HPG’12, pp. 33-37, (2012).

[13] Yisheng Liao. CudaTree, a python library, 2013.

[14] Nikunj C. Oza and Stuart Russell, ‘Experimental comparisons
of online and batch versions of bagging and boosting’, in KDD
"01, pp. 359-364, (2001).

[15] Stefan Popov, Johannes Giinther, Hans-Peter Seidel, and
Philipp Slusallek, ‘Stackless KD-Tree Traversal for High Per-
formance GPU Ray Tracing’, volume 26, pp. 415-424, (2007).

	INTRODUCTION
	RELATED WORK
	CUDA Basics
	VERY FAST DECISION TREES ON GPUs
	Tree Layout
	Tree Leaves
	Learning Phase
	Heuristic: Information Gain
	Node Split

	RANDOM FORESTS ON GPUs
	EXPERIMENTAL EVALUATION
	Accuracy Evaluation
	Single Tree Accuracy Comparison
	Random Forest Accuracy Comparison

	Speed Evaluation
	Single Tree Speed Evaluation
	Random Forest Speed Evaluation

	CONCLUSIONS

