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a b s t r a c t 

Big Data streams are being generated in a faster, bigger, and more commonplace. In this scenario, 

Hoeffding Trees are an established method for classification. Several extensions exist, including high- 

performing ensemble setups such as online and leveraging bagging. Also, k -nearest neighbors is a popular 

choice, with most extensions dealing with the inherent performance limitations over a potentially-infinite 

stream. 

At the same time, gradient descent methods are becoming increasingly popular, owing in part to the 

successes of deep learning. Although deep neural networks can learn incrementally, they have so far 

proved too sensitive to hyper-parameter options and initial conditions to be considered an effective ‘off- 

the-shelf’ data-streams solution. 

In this work, we look at combinations of Hoeffding-trees, nearest neighbor, and gradient descent methods 

with a streaming preprocessing approach in the form of a random feature functions filter for additional 

predictive power. 

We further extend the investigation to implementing methods on GPUs, which we test on some large 

real-world datasets, and show the benefits of using GPUs for data-stream learning due to their high scal- 

ability. 

Our empirical evaluation yields positive results for the novel approaches that we experiment with, high- 

lighting important issues, and shed light on promising future directions in approaches to data-stream 

classification. 

© 2016 Elsevier Inc. All rights reserved. 
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. Introduction 

There is a trend towards working with big and dynamic data

ources. This tendency is clear both in real world applications and

he academic literature. Many modern data sources are not only

ynamic but often generated at high speed and must be classi-

ed in real time. Such contexts can be found in sensor applications

e.g., tracking and activity monitoring), demand prediction (e.g., of

lectricity), manufacturing processes, robotics, email, news feeds,

nd social networks. Real-time analysis of data streams is becom-

ng a key area of data mining research as the number of applica-

ions in this area grows. 
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The requirements for a classifier in a data stream are to 

• Be able to make a classification at any time 
• Deal with a potentially infinite number of examples 
• Access each example in the stream just once 

These requirements can in fact be met by variety of learn-

ng schemes, including even batch learners (e.g., Qu et al., 2009 ),

here batches are constantly gathered over time, and newer mod-

ls replace older ones as memory fills up. Nevertheless, incremen-

al methods remain strongly preferred in the data streams liter-

ture, and particularly the Hoeffding tree (HT) and its variations

 Domingos and Hulten, 20 0 0; Bifet et al., 2010b ), k -nearest neigh-

ors ( k NN) ( Shaker and Hüllermeier, 2012 ). Support for these op-

ions is given by large-scale empirical comparisons ( Read et al.,

012 ), where it is also found that methods such as naive Bayes and

tochastic gradient descent-based (SGD) are relatively poor per-

ormers. 
using random feature functions and novel method combinations, 
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Classification in data streams is a major area of research, in

which Hoeffding trees have long been a favored method. The main

contribution of this paper is to show that random feature function

can be leveraged by other algorithms to obtain similar or even im-

proved performance over tree-based methods. 

With the recent popularity of Deep Learning (DL) methods we

also want to test how a random feature in the form of random

projection layer performs on Deep Neural Networks (DNNs). 

DL aims for a better data representation at multiple layers of

abstraction, and for each layer the network needs to be fine-tuned.

In classification, a common algorithm to fine-tune the network is

the SGD which tries to minimize the error at the output layer us-

ing an objective function, such as Mean Squared Error (MSE). A

Gradient vector is used to back-propagate the error to previous lay-

ers. This gradient nature of the algorithm makes it suitable to be

trained incrementally in batches of size one, similar to how incre-

mental training is done. Unfortunately, DNN are very sensitive to

hyper-parameters such as learning rate ( η), momentum ( μ), num-

ber of number neurons per level, or the number of levels. It is then

not straight forward to provide an of-the-shelf method for data

streams. 

Propagation between layers is usually done in the form of

matrix-vector or matrix-matrix multiplications, which are com-

putational intensive operation. Often hardware accelerators such

as FPGAs or GPUs are used to accelerate the calculations. De-

spite some effort s, acceleration of HT and k NN algorithms for data

streams on the GPUs are has some limitations. We talk briefly

about this in Section 2 . 

In recent years, Extreme Learning Machines ( Huang, 2015 )

(ELMs) have emerged as a popular framework in Machine Learning.

ELMs are a type of feed-forward neural networks characterized by

a random initialization of their hidden layer, combined with a fast

training algorithm. Our random feature method is based on this

approach. 

We made use of the MOA (Massive Online Analysis) frame-

work ( Bifet et al., 2010a ), a software environment for implement-

ing algorithms and running experiments for online learning from

data streams in Java. It implements a large number of modern

methods for classification in streams, including HT, k NN, and SGD-

based methods. We make use of MOA’s extensive library of meth-

ods to form novel combinations with these methods and further

employ an extremely rapid preprocessing technique of projecting

the input into a new space via random feature functions (similar

to ELMs). We then took the methods purely related to Neural Net-

works (those which proved most promising under random projec-

tions) and implemented them using NVIDIA GPUs and CUDA 7.0;

comparing performance to the methods in MOA. 

This paper is organized as follows: Section 2 introduces related

work on tree based approaches, neural networks, and data streams

on GPU. We discuss the use of random features in Sections 3 and

4 for HT/ k NN methods and neural networks respectively. We first

present the evaluation of tree-based methods in Section 5 and later

in Section 6 we extend the SGD method in the form of DNNs, us-

ing different activation functions. We finally conclude the paper in

Section 7 . 

2. Related work 

Hoeffding trees ( Domingos and Hulten, 20 0 0 ) are state-of-the-

art in classification for data streams and they predict by choosing

the majority class at each leaf. However, these trees may be con-

servative at first and in many situations naive Bayes method out-

performs the standard Hoeffding tree initially, although it is even-

tually overtaken ( Holmes et al., 2005 ). A proposed hybrid adap-

tive method by Holmes et al. (2005) is a Hoeffding tree with naive

Bayes at the leaves, i.e., returning a naive Bayes prediction at the
Please cite this article as: D. Marrón et al., Data stream classification 
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eaves, if it has been so far more accurate overall than the majority

lass. Given it’s widespread acceptance, this is the default in MOA,

nd we denote this method in the experimental Section simply as

T. In fact, the naive Bayes classification comes for free, since it

an be made with the same statistics that are collected anyway by

he tree. 

Other established examples include using principal component

nalysis (reviewed also in Hastie et al., 2001 ) for this transfor-

ation, and also Restricted Boltzmann Machines (RBMs) ( Hinton

nd Salakhutdinov, 2006 ). RBMs can be seen as a probabilistic bi-

ary version of PCA, for finding higher-level feature representa-

ions. They have received widespread popularity in recent years

ue to their use in successful deep learning approaches. In this

ase, z = φ(x ) = f (W 

� x ) for some non-linearity f : a sigmoid func-

ion is typical, but more recently rectified linear units (ReLUs, Nair

nd Hinton, 2010 ) have fallen into favor. The weight matrix W is

earned with gradient-based methods ( Hinton, 20 0 0 ), and the pro-

ected output should provide a better feature representation for a

eural network or any off-the-shelf method. This approach was ap-

lied to data streams already in Read et al. (2015) , but concluded

hat the sensitivity to hyper-parameters and initial conditions pre-

ented good ‘out-of-the-box’ deployment in data streams. 

Approaches such as the so-called extreme learning machines

ELMs) ( Huang et al., 2011 ) avoid tricky parametrizations by simply

sing random functions (indeed, ELMs are basically linear learn-

rs on top of non-linear data transformations). Despite the hidden

ayer weights being random , it has been proven that ELMs is still

apable of universal approximation of any non-constant piecewise

ontinuous function ( Huang et al., 2006 ). 

Also an incremental version of ELMs is proposed in bin Huang

t al. (2008) . It starts with an small network, and new neurons are

dded at each step until an stopping criterion of size or residual

rror is reached. The difference with our incremental build is that

e use one instance at time simulating they arrive in time, and

e incrementally train the network. Also our number of neurons

s fixed during the training, in other words, we don’t add/remove

ny neuron during the process. 

Nowadays, in 2015, it is difficult when talking about DL and

NNs not to mention GPUs. They are a massive parallel architec-

ures providing an outstanding performance for High Performance

omputing and a very good performance/watt ratio, as their ar-

hitecture suits very fine to their needs of DNNs computations.

any tools include a back-end to offload the computation to the

PU. NVIDIA has its own portal for deep learning on GPUs at

ttps://developer.nvidia.com/deep-learning . 

GPUs has not only used to accelerate DL/DNN computations due

o its performance, it has been also been used to successfully ac-

elerate HT and ensembles. However, few works are provided in

he context of data streams and GPUs. 

The only work we are aware of regarding to HT in the context

f online real-time data streams mining is Marron et al. (2014) ,

ere the authors present a parallel implementation of HT and Ran-

om Forests for binary trees and data streams achieving goods

peedups, but with limitations on the size and with high memory

onsumption. More generic HT implementation of Random Forests

s presented in Grahn et al. (2011) . In Schulz et al. (2015) the au-

hors introduced an open source library, available at github, to pre-

ict images labeling using random forests. The library is also tested

heir on a cell phone with VGA resolution in real-time with good

esults. 

Also, k NN has already been successfully ported to GPUs ( Garcia

t al., 2008 ). That paper presented one of the first implemen-

ations of the “brute force” k NN on GPUs, and compared with

everal CPU-based implementations with speedups up to teo

rders of magnitude. k NN is also used in business intelligence

 Huang et al., 2012 ) and has also its implementation on the GPU.
using random feature functions and novel method combinations, 
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Fig. 1. An example setup: Input x is filtered (i.e., projected) to random layer z 

(first layer of connections), which goes to an ensemble of, for example, HTs (sec- 

ond layer), wherein instances are partitioned to the leaves and are again filtered 

(third layer) and used as training for, say, SGD, producing (in the firth layer of con- 

nections) final vote y . Note, however, that we only draw the final two layers wrt to 

the first of the HT models. 

y

z4z3z2z1

x5x4x3x2x1

Fig. 2. Random Projection Layer: Input x is projected to a random layer z (first layer 

of connections), which is trained to produce the final vote y . 
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Fig. 3. Terrain of ReLU basis function on two input attributes x 1 , x 2 the feature 

function z is given on the vertical axis. 
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he same way as with HT, a tool for machine learning (including

 NN) is described in Liu et al. (2015) . 

. Tree based random feature functions 

Transforming the feature space prior to learning and classifica-

ion is an established idea in the statistical and machine learning

iterature ( Hastie et al., 2001 ), for example with basis (or feature-)

unctions. Suppose the input instance is x of length d . This vector

s transformed to a new space z = φ(x ) via function φ, creating

ew vector z of length h . Any off-the-shelf model now treats z as

f it were the input. The functions can be either chosen suitably by

 domain expert, or simply chosen to achieve a more dimensioned

epresentation of the input. Polynomials and splines are a typical

hoice. 

Regarding HTs with additional algorithms in the leaves (as de-

cribed in Section 2 ), this filter can either be placed before the HT,

r before the method in the leaves, or both. 

In this paper we adapt this methodology to deal with other

lassifiers in a similar way, namely k NN and an SGD-based method

rather than naive Bayes) at the leaves. We denote these cases HT-

 NN and HT-SGD, respectively. For example, in HT-SGD, a gradient

escent learner is employed in the leaves of each tree. Similarly

o HT, predictions by the k NN and an SGD-based method are only

sed if they are more accurate on average than the majority class. 

.1. Ensembles in data streams 

Bagging is an ensemble method used to improve the accu-

acy of classifier methods. Non-streaming bagging ( Breiman, 1996 )

uilds a set of M base models, training each model with a boot-

trap sample of size N created by drawing random samples with

eplacement from the original training set. Each base model’s

raining set contains each of the original training example K times

here P (K = k ) follows a binomial distribution. This binomial dis-

ribution for large values of N tends to a Poisson( λ = 1 ) distribu-

ion, where Poisson( λ = 1 ) = exp (−1) /k ! . Using this fact, Oza and

ussell (20 01b ); 20 01a ) proposed Online Bagging , an online method

hat instead of sampling with replacement, gives each example a

eight according to Poisson(1). ADWIN Bagging ( Bifet et al., 2009 )

s an adaptive version of Online Bagging that uses a change detec-

or to decide when to discard under-performing ensemble models. 

Leveraging Bagging (LB, Bifet et al., 2010b ) improves

DWIN Bagging, increasing the weights of this resampling using a

arger value λ to compute the value of the Poisson distribution.

he Poisson distribution is used to model the number of events

ccurring within a given time interval. It proved very competitive. 

Again, we can run a filter on the input instances before entering

he ensemble of trees, or at the leaves. It is even possible to run

he filter again on the output of an ensemble (i.e., the votes), before

unning an additional stacking procedure. This kind of methodol-

gy can give way to rather ‘deep’ classifiers. Fig. 1 illustrates a pos-

ible setup. In this sense of multiple levels we could also call our

pproach deep learning. It is debatable whether decision trees can

e called a deep method (their levels involve partitioning an exist-

ng feature set rather than because they simple partition a space

ather than create higher-level feature space). However, several of

he methods we investigate have at least multiple levels of feature

ransformation, which is behind the power of most deep methods.

n the following Section we investigate the empirical performance

f several novel combinations based on the methodology described

o far. 
Please cite this article as: D. Marrón et al., Data stream classification 
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. Neural networks with random projections for data streams 

Data streams are potentially infinite, and so, they can evolve

ith time. This means the statistical distribution of the data we

re interested on can change. The idea behind the random layer is

o improve data localization across the space the trained layer sees.

magine the instance is a tiny luminous point on the space, with

nough random neurons acting as a mirror we hope the trained

ayer can capture better the data movement. The strategy used by

he random projection layer is shown in Fig. 2 

Except for the fact it is never trained, the random layer is a nor-

al layer and need its activation functions, in this work sigmoid,

eLU, ReLU incremental and a Radial Basis Function are used. 

The sigmoid function used is the standard one, with σ (x ) ∈
 −1 , 1] : 

(a k ) = 

1 

1 + e −a k 

here a k = W 

� 
k 

x is the k -th activation function and W is the

eight d × h matrix ( d input attributes, h output features). 

ReLU functions are defined as: 

 k = f (a k ) = max (0 , a k ) 

s stated in Section 2 , ReLUs activation are very efficient as they

equire only a comparison. In our random projection we expect

ear 50% of the neurons to be active for a single instance (the ter-

ain of a ReLU is exemplified in Fig. 3 ). 
using random feature functions and novel method combinations, 
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(a) Typical Random ini-
tialization

(b) Better use of random
range

Fig. 4. Random number initialization strategies. (For interpretation of the refer- 

ences to colour in this figure legend, the reader is referred to the web version of 

this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Data sources used in the experimental evaluation. 

Synthetic datasets are listed first. 

Dataset #Attributes #Instances 

RBF1 10 100 ,0 0 0 

HYP1 10 100 ,0 0 0 

LED1 24 100 ,0 0 0 

LOC1 25 100 ,0 0 0 

LOC2 2500 100 ,0 0 0 

Poker 10 829 ,201 

Electricity 8 45 ,312 

CoverType 54 581 ,012 

SUSY 8 5 ,0 0 0,0 0 0 

f  

p  

w  

c  

o

 

E  

p  

e  

r

 

i  

a  

S

 

f  

i  

f  

d  

i  

fi

 

m  

L  

o  

s  

t  

a  

c  

p  

r

 

f  

t  

s  

s  

v  

s  

a

 

f  

d  

r

 

f  

k  

l  

a  
One variation we can do to the standard ReLU is to use the

mean value of the attribute as a threshold. The mean value is cal-

culated incrementally as instances arrive. We call this variant ReLU

incremental, and is defined as: 

f (a k ) = max ( ̄a k , a k ) 

The last activation function we are using is the Radial Basis

Function (RBF): 

φ(x ) = e −
(x −c i ) 

2 

2 σ2 

where x is an input instance attribute value and c i is a random

value set at initialization time. Each neuron in the random layer

has its own set of c i , the length of both vector x and c are the

same. So, we can see the operation (x − c i ) 
2 as the euclidean dis-

tance of the current instance to a randomly positioned center. The

σ 2 is a free parameter. A simplification we can do to this notation

is: 

γ = 

1 

2 σ 2 

In our experiments we try different γ values passed at com-

mand line. We use the following notation in our experiments: 

φ(x ) = e −γ (x −c i ) 
2 

All matrices and vectors in our model are initialized using ran-

dom numbers. Matrices are used as normal weight matrix, but the

function of the vectors are activation function dependent. Usually

initialization is done using random numbers with μ = 0 and σ = 1 .

Assuming our data range ∈ [ −1 , 1] if we put a Gaussian centered at

one of the endpoints, half of its are of influence area if wasted and

will never see a point making it harder to fill the whole space and

so the discovering of points. 

If a smaller range is used, σ ∈ (0, 1) (note the open inter-

val), we can improve each neuron’s area of influence, as shown

in Fig. 4 b. In red the random numbers range is smaller than data

range so if we put a Gaussian at the random endpoint can improve

its influence are. In this example we used a Gaussian function as

an example, but we the idea extends the same for activation func-

tions. In fact this is what we do in Section 6 , specially when talking

about the sigmoid neurons as they are always used at the trained

layer. 

5. Random feature function evaluation 

Among the methods we investigate (e.g., HT, k NN, SGD 

1 ), differ-

ent levels of filters and ensembles and possibly additional classifi-

cation in the leaves (in the case of HT), there are a multitude of

possible combinations. We first investigate the viability of random
1 We refer, in this case, to the instantiation with default parameters in MOA, i.e., 

minimizing hinge loss. 

n  

t  

g  

d  

Please cite this article as: D. Marrón et al., Data stream classification 
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eature functions and their effect on the different classifiers (com-

aring these common methods with their ‘filtered’ versions that

e denote HT-SGD, k NN-F, and SGD-F. This study led us to novel

ombinations, which we further compare to the benchmark meth-

ds and state-of-the-art Leveraging Bagging (LB-HT). 

The random feature used in these evaluations are basically

LMs ( Huang et al., 2011 ). In this Section, we use only ReLU (ex-

lained in Section 4 ) as the activation function. In Section 4 we

xtend the functions used within the random feature to define a

andom projection layer for DNNs. 

Our random feature is based on ELMs, which are defined us-

ng Radial Basis Functions, but instead in this section we use ReLU

s the activation functions. Both functions are defined in detail in

ection 4 

All experiments in this section were carried out using the MOA

ramework ( Bifet et al., 2010a ) with prequential evaluation: each

ndividual example is used to test the model before it is used

or training, and from this the accuracy can be incrementally up-

ated. We used an 8-core (3.20GHz each) desktop machine allow-

ng up to 1 gigabyte of RAM per run (all methods were able to

nish). 

Table 1 lists the data sources used. A thorough description of

ost of the datasets is given in Read et al. (2012) . Of the others,

OC1 and LOC2 are datasets dealing with classifying the location

f an object in a grid of 5 × 5 and 50 × 50 pixels respectively, de-

cribed in Read and Hollmén (2014) . Baldi et al. (2014) has features

hat are kinematic properties measured by particle detectors in an

ccelerator. The binary class distinguishes between a signal pro-

ess which produces supersymmetric particles and a background

rocess which does not. It is one of the largest datasets in the UCI

epository that we could find. 

For the feature filter we used parameters h = 5 d hidden units

or k NN-F and h = 10 d for SGD-F and HT-F (a decision based on

he relative computational sensitivity of k NN to a larger attribute

pace – for LOC2 this means 25,0 0 0 attributes in the projected

pace for SGD-F, and half of that for k NN-F) – except where this is

aried in Fig. 5 . For k NN we used a buffer size of 50 0 0. For LB we

pecify 10 models. In other cases, the default parameters in MOA

re used. 

Fig. 5 displays the results of varying the relative size of the new

eature space (wrt to the original feature space) on two real-world

atasets. Note that the feature space is different, so even when this

atio is 1: 1, performance may differ. 

With regard to k NN, performance improves with more feature

unctions. In one of the two cases, this is sufficient to overtake

 NN on the original feature space. Unfortunately, k NN is particu-

arly sensitive to the number of attributes, so complexity becomes

n issue long before other methods. The new feature space does

ot help the performance of HT, and in neither case does it reach

he performance of HT on the original feature space. In fact, it be-

ins to decrease again. This is because too many features makes it

ifficult for HT to become confident enough to split on, and may
using random feature functions and novel method combinations, 
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Fig. 6. Performance over first 50,0 0 0 examples (right) of the SUSY data, in each 

divided into 100 windows. 
plit poorly. Also, by partitioning the feature space, interaction be-

ween the features is lost. SGD reacts best to a new feature space.

s noticed earlier ( Read et al., 2012 ), SGD is a poor performer com-

ared to HTs, however, working in a feature space of random Re-

Us, SGD-F actually reaches HT performance (on SUSY , and looks

romising under ELEC ) with similar time complexity. Even at 10 0 0

imes the original feature space, running time is acceptable (only a

everal seconds per 10,0 0 0 instances). On the other hand, the in-

reased memory use is significant across all methods. SGD requires

0 0 0 times more memory in this setting. 

From this initial investigation we formulate several method

ombinations for a more extensive evaluation. Table 2 displays the

nal accuracy over the data stream. The first four columns rep-

esent the baselines and state-of-the-art (LB-HT), and remaining

olumns are a selection of new method combinations. Fig. 6 gives a

ore detailed over-time view of the largest dataset ( SUSY ), with

he average performance plotted over the entire stream over 100

ntervals, and also the first 1/10th of the data (again, over 100 in-

ervals). The second plot gives more of an idea about how models

espond to fresh concepts. Learning new concepts is a fundamental

art in data streams of adapting to concept drift. 

Regarding this experiment some of the most important obser-

ations and conclusions are as follows: 

• SGD-F (i.e., SGD with random feature functions), even in this

first analysis, out-competes established methods like k NN on

several datasets. 
• k NN benefits relatively less (than SGD) from the feature func-

tions filter. This is expected, since k NN is already a non-linear

learner. 
Please cite this article as: D. Marrón et al., Data stream classification using random feature functions and novel method combinations, 
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Table 2 

Final accuracy and running times. The dataset-wise ranking is given in (parentheses) and the average of these ranks is given 

in the final row. 

(a) Accuracy 

Dataset HT SGD kNN LB-HT LB-SGD-F kNN-F SGD-F HT-kNN HT-SGD-F 

RBF1 75 .0 (5) 54 .5 (9) 92 .0 (2) 88 .7 (4) 72 .0 (8) 90 .4 (3) 72 .0 (7) 92 .6 (1) 73 .7 (6) 

RBFD 65 .7 (5) 51 .3 (9) 88 .6 (1) 79 .5 (4) 59 .8 (8) 86 .3 (2) 59 .9 (7) 84 .9 (3) 59 .9 (6) 

HYP1 87 .7 (1) 50 .3 (9) 82 .9 (4) 85 .7 (2) 67 .2 (7) 77 .0 (5) 67 .2 (7) 83 .3 (3) 67 .9 (6) 

LED1 73 .1 (1) 10 .3 (9) 62 .8 (3) 72 .0 (2) 15 .6 (6) 49 .0 (5) 15 .5 (7) 62 .8 (3) 15 .5 (7) 

POKR 76 .1 (6) 68 .9 (9) 69 .3 (8) 87 .6 (1) 82 .3 (2) 81 .5 (4) 81 .9 (3) 74 .8 (7) 80 .1 (5) 

LOC1 85 .5 (8) 80 .4 (9) 91 .0 (2) 90 .5 (6) 90 .7 (4) 88 .8 (7) 90 .7 (3) 91 .3 (1) 90 .7 (5) 

LOC2 56 .3 (5) 51 .5 (9) 75 .7 (2) 52 .6 (8) 56 .8 (4) 74 .5 (3) 55 .9 (7) 75 .9 (1) 56 .1 (6) 

ELEC 79 .2 (4) 57 .6 (9) 78 .4 (5) 89 .8 (1) 74 .8 (7) 74 .2 (8) 74 .8 (6) 82 .5 (2) 81 .8 (3) 

COVT 80 .3 (5) 60 .7 (9) 92 .2 (1) 91 .7 (2) 78 .7 (6) 91 .6 (3) 78 .7 (7) 91 .2 (4) 78 .3 (8) 

SUSY 78 .2 (3) 76 .5 (7) 67 .5 (9) 78 .7 (1) 77 .7 (4) 71 .2 (8) 77 .7 (5) 77 .2 (6) 78 .4 (2) 

avg rank 4 .30 8 .80 3 .70 3 .10 5 .60 4 .80 5 .90 3 .10 5 .40 

(b) Running time (s) 

Dataset HT SGD kNN LB-HT LB-SGD-F kNN-F SGD-F HT-kNN HT-SGD-F 

RBF1 0 (3) 0 (1) 3 (6) 3 (5) 4 (8) 14 (9) 0 (2) 4 (7) 1 (4) 

RBFD 1 (3) 0 (1) 3 (6) 2 (5) 4 (8) 15 (9) 0 (2) 4 (7) 1 (4) 

HYP1 0 (2) 0 (1) 3 (6) 2 (5) 4 (7) 13 (9) 0 (3) 4 (8) 1 (4) 

LED1 0 (2) 0 (1) 7 (6) 2 (5) 17 (8) 40 (9) 1 (3) 8 (7) 1 (4) 

POKR 9 (2) 3 (1) 455 (8) 91 (5) 279 (6) 1539 (9) 21 (3) 422 (7) 26 (4) 

LOC1 1 (2) 0 (1) 8 (7) 2 (5) 21 (8) 48 (9) 1 (3) 8 (6) 2 (4) 

LOC2 9 (2) 4 (1) 1276 (7) 93 (3) 1917 (8) 2270 (9) 367 (5) 1230 (6) 350 (4) 

ELEC 1 (3) 0 (1) 14 (7) 10 (6) 9 (5) 49 (9) 1 (2) 19 (8) 2 (4) 

COVT 19 (2) 11 (1) 605 (6) 220 (3) 4119 (9) 3998 (8) 233 (4) 727 (7) 250 (5) 

SUSY 45 (2) 25 (1) 1464 (8) 530 (5) 1040 (6) 4714 (9) 118 (3) 1428 (7) 159 (4) 

avg rank 2 .30 1 .00 6 .70 4 .70 7 .30 8 .90 3 .00 7 .00 4 .10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

Random numbers initialization strategy for the different activation func- 

tions. 

Activation Weight matrix Bias vector 

RBF mean = 0.0 and std = 1.0 gamma 

Sigmoid mean = 0.0 and std = 0.9 mean = 0.0 and std = 0.2 

ReLU mean = 0.0 and std = 1.0 mean = 0.0 and std = 0.1 

ReLU Inc mean = 0.0 and std = 1.0 0 .0 
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However, on a few datasets accuracy is 5-10 percentage points

higher with the filter. 
• k NN can be used effectively in the leaves of HT instead of the

default of naive Bayes. There is an additional computational

cost involved, but results showed this to be highly competitive

method – best equal overall in predictive performance tied with

state-of-the-art LB-HT 
• HT is difficult to improve on using feature functions (at least

with the ReLUs that we experimented with). Again, this can

be attributed to HT being a non-linear learner. Peak accuracy

is reached in relatively short space of time. 
• SGD takes longer than HT or LB-HT to reach competitive accu-

racy, but the gap narrows significantly with more examples (for

example, under SUSY ). On the largest datasets, the final aver-

age accuracy is within a percentage point – and this average

includes initial poorer performance. Therefore, on particularly

big data streams (which are increasingly common), HTs could

find themselves increasingly challenged to stay ahead of these

methods. 
• HT-SGD-F is comparable to the state of the art LB-HT on several

datasets, but demonstrates more favorable running times. 
• Unlike many deep learning techniques, these random functions

do not require sensitive calibration. 
• Unsurprisingly, k NN-based methods perform best on the

dataset RBFD which has a drifting concept, since they auto-

matically phase out older concepts. We did not look into detail

about dealing with concept drift in this paper, but this can be

dealt with by ‘meta methods’, e.g., ( Bifet and Gavaldà, 2007 ). 
• Employing random feature functions as a ‘filter’ in the MOA

framework is a convenient and flexible way to apply it in a

range of different data-stream methods. 

6. GPU extended evaluation 

In the previous Section evaluations, we noticed SGD methods

have the strongest advantage from random feature functions. This

added to the increasing popularity of DL methods, we elected this
Please cite this article as: D. Marrón et al., Data stream classification 

The Journal of Systems and Software (2016), http://dx.doi.org/10.1016/j.
trategy for further investigation and experimentation in this Sec-

ion. A natural choice for implementing DNNs is to use GPUs to

ccelerate the calculations. Our experiments were evaluated on an

VIDIA Tesla K40c with 12GB of RAM each, 15 SMX and up to 2880

imultaneous threads and CUDA 7.0. 

Another motivation to use to GPUs the selection of the network

yper parameters by using cross-validation: for each dataset and

ctivation functions different configurations are tested and best

erforming one is chosen. In turned out this was a high number of

ombinations and a way to accelerate the process is using GPUs. 

The random projection layer is implemented using an standard

wo layers feed-forward fully connected network. The input is fed

o the random layer, which is never trained, and the output from

his layer is forwarded to the trained layer. In this work we use

he SGD and MSE as the training algorithm and objective function

espectively for the last layer. 

We use three of the data sources from Table 1 Covertype

COVT), Electricity (ELEC), and SUSY. This way we can compare the

ccuracy obtained in this Section against well-known state-of-the-

rt algorithms. 

The initialization of each layer depends on the activation func-

ion used, we tried different random number initialization strate-

ies and those for which we achieved the best results are sum-

arized in Table 3 . Most of the weight matrices are initialized us-

ng random numbers with mean = 0 and σ = 1 . 0 , except for the

igmoid activation function. The bias vector purpose and usage is

ctivation function dependent. 
using random feature functions and novel method combinations, 
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Table 4 

GPU tests; best results. 

Best algorithms Random projection 

Dataset Alg Acc (%) Time (s) Activ Size Acc (%) Time (s) speedup 

ELEC LB-HT 89 .8 10 Sigmoid 100 85 .33 1 .2 8x 

COVT k NN 92 .2 605 ReLU 20 0 0 94 .59 32 17x 

SUSY LB-HT 78 .7 530 RBF 600 77 .63 172 3x 
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Table 5 

ELEC evaluation. 

Activation Random neurons μ η Accuracy(%) 

SIG 100 0 .3 0 .11 85 .33 

ReLU 400 0 .3 0 .01 84 .95 

ReLU inc 200 0 .3 0 .01 84 .97 

RBF γ =0 .001 20 0 0 0 .7 1 .01 72 .13 

RBF γ =0 .01 20 0 0 0 .7 1 .01 72 .13 

RBF γ =0 .1 20 0 0 0 .7 1 .01 72 .13 

RBF γ =1 .0 20 0 0 0 .7 1 .01 72 .13 

RBF γ =10 .0 20 0 0 0 .7 1 .01 72 .13 
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Fig. 7. Elec dataset. 

Table 6 

COV evaluation. 

Activation Random neurons μ η Accuracy(%) 

SIG 10 0 0 0 .4 0 .11 94 .45 

ReLU 20 0 0 0 .4 0 .01 94 .59 

ReLU inc 20 0 0 0 .4 0 .01 94 .58 

RBF γ =0 .001 90 0 .9 1 .01 73 .18 

RBF γ =0 .01 90 0 .9 1 .01 73 .18 

RBF γ =0 .1 90 0 .5 1 .01 73 .18 

RBF γ =1 .0 90 0 .8 1 .01 73 .18 

RBF γ =10 .0 90 1 .0 1 .01 73 .18 
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Different activation functions have been tested at the random

ayer: RBF-gamma, Sigmoid, ReLU, incremental ReLU. Sigmoid and

eLU are used in the standard way. As we can see in Table 3 bias

ector for RBF stores the gammas, in out evaluations we use γ =
 0 . 001 , 0 . 01 , 0 . 1 , 1 . 0 , 10 . 0 } . ReLU incremental used the bias vector

o store the incremental mean for each output attribute. At the

rained layer always, we always use the standard sigmoid as the

ctivation function. 

The same way as in Section 5 , the network is built incremen-

ally using prequential learning; we visit each instance only one

ime. This is in contrast to typical DNNs training, where instances

re loaded in batches and the algorithm iterates over them given

umber of times and, every time the error is reduced the model is

heckpointed and spread to be used. 

Table 4 summarizes the best results we obtained, and it com-

ares them with the best results obtained in Section 5 evaluations.

e choose the algorithms by accuracy, and compared the time to

un against them. Configuration were chosen by cross-validation

sing the following parameters: μ ∈ [0.1, 1.0] with an increment

f 0.1 and a similar range for learning rate. Sizes tested: [10, 100]

ncrement of 10, [100, 10 0 0] increment of 100, and two more sizes:

50 0, 20 0 0. 

For the electricity dataset random projection layer (RPL) ob-

ained an accuracy of 85.33% using a random layer of 100 neurons

nd a sigmoid activation function. As we can see in Table 4 the

est performing algorithm is the LB-HT which achieved a 89.8%. If

ompared with results at Table 2 , we can see our method is the

econd best result, 4.47 percentage points less. 

In the covertype dataset evaluation RPL obtained the best re-

ult for this dataset with an accuracy of 94.59%, improving 2.39

ercentage points the k NN algorithm using a ReLU activation func-

ions. 

Finally, our RPL performed relatively poorly in the SUSY dataset

sing 600 random neurons. We obtained a 77.63% , 1.07 percentage

oints less than the LB-HT. This distance is lees than the distance

btained with the electricity algorithm, but if we rank out results

ith those in Table 2 we are at the sixth position. 

With regard the time to complete, we can see the GPU is faster

n all of the three datasets. For the electricity dataset RPL is 8 times

aster, for the CoverType dataset 17 times faster and 3 times faster

or the SUSY dataset. 

Now we detail for each dataset the activation curves, the mo-

entum and learning rate for this figure are the same across all

izes and we used the ones for the best results to see how size

ffects the accuracy. 

.1. Electricity dataset 

Table 5 summarizes the best results for each activation func-

ions, and its configurations. As saw previously sigmoid activation

unction performed better than the others for this dataset. In the

econd position we find ReLU and ReLU inc activation functions

hich gave similar results, and slightly worse than the sigmoid.

egarding the RBF, all configurations we tried performed worse if

ompared to sigmoid, ReLU and ReLU inc, but very similar for the
Please cite this article as: D. Marrón et al., Data stream classification 

The Journal of Systems and Software (2016), http://dx.doi.org/10.1016/j.
ifferent gammas. In Fig. 7 we can see how accuracy changes with

ifferent sizes we tested. 

.2. CoverType dataset 

Table 6 give us the best results for the COVT dataset each ac-

ivation function. We can see a similar pattern as with the ELEC

valuation, SIG, ReLU and ReLU inc performed much better than

he RBFs, and all three can beat results shown in Table 2 . This time

he best result is obtained with the ReLU activation function at the

andom layer. 
using random feature functions and novel method combinations, 
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Fig. 8. COV normalized dataset. 

Table 7 

SUSY evaluation. 

Activation Random neurons μ η Accuracy(%) 

SIG 20 1 0 .61 67 .28 

ReLU 20 1 0 .61 74 .84 

ReLU inc 20 1 0 .91 74 .80 

RBF γ =0 .001 600 1 0 .71 77 .63 

RBF γ =0 .01 600 1 0 .71 77 .63 

RBF γ =0 .1 600 1 0 .71 77 .63 

RBF γ =1 .0 600 1 0 .71 77 .63 

RBF γ =10 .0 600 1 0 .71 77 .63 
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In Fig. 8 we can see the activation curves. Although we got the

best result with ReLU, the sigmoid has a better learning curve and

it is very close to the ReLU accuracy. ReLU inc has a very simi-

lar learning curve as the standard ReLU. The different RBFs for the

same momentum and learning with different sizes gives very sim-

ilar (if not equal) results, so we chose the lower sizes. 

6.3. SUSY dataset 

Table 7 shows the best results for the SUSY dataset and acti-

vation function, and Fig. 9 the learning curves. The most notice-

able effect is sigmoid, ReLU and ReLU inc the stop learning very

soon, with only 20 random neurons ReLU reached its maximum

peak with 74.85%. The RBFs which performed poorly in previous

evaluations, here are those with the best results. 

One curious result we can see is that the RBFs are perform-

ing around 7x% in all 3 evaluations. Even if 2 of the 3 results are

not very good, it seems they are not very sensitive to the different

datasets, and somehow the results are stable across different data

distributions. 

7. Conclusions 

In this paper, we studied combinations of Hoeffding trees, near-

est neighbour, and gradient descent methods adding a layer based

on a random feature function filter. We found that this random

layer can turn a simple gradient descent learner into a competi-

tive method for real-time data analysis. With this first attempt we

could even improve on current state-of-the-art algorithms, scoring

the best and the second best results for two out of three datasets

tested. Like Hoeffding Trees and nearest neighbour methods, but
Please cite this article as: D. Marrón et al., Data stream classification 

The Journal of Systems and Software (2016), http://dx.doi.org/10.1016/j.
nlike many other gradient descent-based methods, the random

ayer works well without intensive parameter tuning. 

We successfully extended and implemented on GPUs, obtaining

owerful predictive performance. This suggests that using GPUs for

ata stream mining is a promising research topic for obtaining new

ast and adaptive machine learning methodologies. 

In the future we intend to look for adding and pruning units

ncrementally in the stream over time to respond to make more

fficient use of memory and adapt to drifting concepts. Also we

ould like to continue studying how to obtain new high scalable

ethods using GPUs. 
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